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Protein folding research during the past decade has emphasized

the dominant role of native state topology in determining the

speed and mechanism of folding for small proteins; this has been

illustrated by simulations using minimalist protein models. The

advantages of minimalist protein models lie in their ability to

rapidly collect meaningful statistics about folding pathways and

kinetics, their ease of characterization with coarse-grained order

parameters and their concentration on the essential physics of

the problem to connect with experimental observables for a

target protein. The maturation of experimental protein folding has

driven the need for more quantitative protein simulations to

better understand the balance between sequence details and

fold topology. In the past year, we have seen the emergence of

more complex minimalist models, ranging from all-atom Gō

potentials to coarse-grained bead models in which Gō

interactions are replaced or supplemented by more physically

motivated potentials. The reduced computational cost at the

coarse-grained level of abstraction will potentially enable both

folding studies on a genomic scale and systematic application in

protein design.
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Introduction
Considerable physical insight into the protein folding

process has been gained from advances in theoretical

perspectives [1]. These are often explored by computer

simulation with minimalist (suppression of significant

computational complexity) protein models [1–3]. Energy

landscape theories and supporting simulations have sug-

gested that several thermodynamic measures, such as a

smooth energy landscape [4], a large energy gap between

native and misfolded free energy basins [4,5], and the

s-parameter (which measures the concomitant formation

of native interactions with polymer collapse [6]), can be

correlated with the fast folding kinetics of native protein

sequences.

Early illustrations of the energy landscape theory

involved simulations of the protein chain as a string of

single-site beads with interactions that favor native state

contacts of the target fold topology, also known as Gō

potentials [1–3]. Minimalist Gō models minimize ener-

getic roughness (traps) on the free energy surface and are

topologically ‘frustrated’ only in folding to a particular

three-dimensional shape. They provide a sufficient pro-

tein model for explaining why native sequences fold more

rapidly and more reliably relative to poorly designed or

arbitrary heteropolymer sequences [1,3–6]; these conclu-

sions extend to the possibility that evolution has evolved

sequences that favor fast folding [7]. They qualitatively

reproduce differences in the folding kinetics of small and

large proteins [8], and have been used to clarify the role

of native state topology and minimal energetic frustra-

tion in the determination of the rate and mechanism of

folding [9,10�].

Because Gō models avoid the more difficult aspect of the

protein folding problem — its dependence on amino acid

sequence — it is not surprising that these idealized

models lack a quantitative connection to experiment in

some cases [11��,12��]. For example, systematic experi-

mental folding studies of approximately 20 small proteins

have shown that, although they all fold by a two-state

mechanism, their individual folding timescales vary over

many decades [13] — something that is not reproduced by

Gō models. An increase in model complexity is required

to distinguish differences in the folding mechanisms of

proteins with identical topologies, such as the classic

example of proteins L and G. The presence or absence

of early kinetic intermediates in folding is controversial

in the experimental domain [14��,15��], and could be

addressed by predictive protein folding simulations in

which the model is fully characterizable.

Better connection to experimental folding can and will be

made by increasing the accessible timescales of atomic-

detail protein and solvent simulations [16�,17,18�]. An

exciting development concerning the sampling problem

for more complex potentials is being realized by new

computing paradigms such as world-wide distributed

computing [18�] and new hardware architectures from

IBM’s Blue Gene project [19�] that simulate the full

protein folding event of populations of trajectories.

These efforts have provided a more detailed connection

to experimental studies [20�], will help validate empiri-

cal forcefields and drive the development of new
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analysis techniques that cope with unprecedented

volumes of data.

However, a model that contains this level of complexity is

still too computationally expensive to be feasible given

the amount of statistics required to fully characterize the

thermodynamics and kinetics of the folding process. This

is especially true when we consider the challenge of

simulating a large number of protein folds, protein sizes

and sequence mutations [21�]. The advantages of minim-

alist models lie in their ability to rapidly collect mean-

ingful statistics about folding pathways, kinetics and

thermodynamics, and their ease of characterization with

coarse-grained order parameters.

Why would minimalist models be expected to be a

reasonable approximation to the folding of real proteins?

Real proteins exhibit a greater variety and subtlety of

interactions among the different amino acids, cooperative

formation of secondary structure through backbone

hydrogen bonding and very specific sidechain packing

of the native state core. The answer, in part, lies in the

important observation by Plaxco et al. [22] that the mag-

nitude of the folding rate for simple two-state folders is

strongly correlated with average sequence separation

between contacting residues in the native state. This

emphasis on native topology is something that coarse-

grained models do well by capturing the correct spatial

distribution of local and nonlocal contacts, elements

considered to be possibly the most important in governing

the overall kinetics of protein folding [9,23�].

Currently, minimalist protein models are evolving toward

making better connections to experiment by adding more

chemical detail and physically motivated interactions. A

number of studies have recently examined all-atom Gō

potentials that have demonstrated an increase in folding

cooperativity due to better sidechain packing [24��,25�].
These all-atom Gō potentials are one way to examine the

more delicate balance between energetic and topological

frustration for proteins in the ubiquitin and SH3 fold

classes, for example. Alternatively, several research groups

have considered sequence-dependent bead models, in

which the Gō interactions are replaced by potentials of

mean force that are derived from physical principles

[26–29,30�–32�,33��,34,35], or Miyazawa and Jernigan

(MJ) statistical potentials [36] laid over Gō interactions

[37�]. Given the importance of aqueous solvent in protein

folding and stability, minimalist protein models now place

greater emphasis on residue interactions with more explicit

features of hydration forces [38,39�].

Here, we review progress in the development of minim-

alist models and their application to current research

issues in protein folding. We conclude with an outlook

of their promise in the wider context of the design and

folding of many sequences and topologies.

The balance between topological and
energetic frustration
Sequence-independent Gō models have minimal ener-

getic frustration and therefore are inappropriate for

explaining differences in mechanism or folding speed

for proteins with low sequence identity but high struc-

tural homology. A classic example of this more delicate

balance between energetic and topological frustration is

found for proteins G and L, small proteins that adopt a

ubiquitin fold consisting of a central a helix packed

against a mixed b sheet composed of two b-hairpin

structures (Figure 1). Experiments on proteins G and

L have established that they fold by different pathways

[40–44,45�]. Protein L folds through a polarized transition

state, whereby the first b hairpin forms with the second b
hairpin unstructured. By contrast, protein G folds through

a transition state with purported rate-limiting formation of

the second b hairpin.

A current note of discord in the experimental folding

community is the existence of early intermediates in

folding, that is, free energy barriers that precede the

Figure 1

Minimalist model of the native state topology of protein L (bottom) and

the NMR solution structure (top) [64], showing the similar arrangement

of secondary and tertiary structure.
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rate-limiting nucleation barrier of the folding reaction

[15��]. Although there is agreement that the folding of

protein L appears to be purely two state [43,44], protein G

shows evidence of an early intermediate along the folding

pathway [41], although this result has been contested as a

problem of the suspect interpretation of ultrafast folding

events in general [15��].

Recent simulations of coarse-grained models of proteins

L and/or G (Figure 1) have been reported by several

research groups using different enhanced forms of minim-

alist models. Shimada and Shakhnovich [24��] have used

ensemble dynamics to characterize the kinetics of protein

G using an all-atom Gō potential. Karanicolas and Brooks

[37�] used a Gō potential bead model supplemented by

sequence-dependent MJ statistical potentials to differ-

entiate the folding of proteins G and L. They found the

origin of asymmetry in the folding of proteins L and G to

be in concurrence with Nauli et al. [45�], who used a

computer-based design strategy to re-engineer the pro-

tein G sequence to include more stabilizing interactions

for the first b-hairpin turn, producing a protein more

faithful to the folding of protein L. Brown and Head-

Gordon [33��] have simulated the folding of proteins G

and L using an off-lattice bead model developed as the

first sequence-dependent minimalist model for a/b topol-

ogies, in which the tertiary Gō interactions are replaced

by potentials of mean force derived from physical prin-

ciples [30�–32�,33��].

The consensus of the two extended minimalist models

used to examine the kinetics of protein G [24��,33��]
determined that protein G folds through multiple path-

ways and, in addition, some or all of these pathways involve

an intermediate. A portion of folding trajectories follow a

fast pathway consistent with collapse concomitant with

native structure formation (which is equivalent mechan-

istically, but not in full detail, to that found for protein L)

(Figure 2). Others followed a slow pathway (best fit to a

double exponential) involving an early event of strong

compaction with some structuring of the second b hairpin,

and a long timescale for correcting the consequences of

Figure 2
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Free energy at the folding temperature as a function of radius of gyration (Rg) and native state similarity (w) for protein G. Two folding pathways are

present. The fast pathway corresponds to a collapse-concomitant folding pathway (arrow on right), whereas the slow pathway (arrow on left)

corresponds to rapid non-native collapse with a structured second b hairpin and a longer process of finding the native structure. The contour lines are

spaced at intervals of kbT, with blue to red representing high to low free energy values.
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non-native collapse (Figure 2). In the study reported in

[33��], protein G folds slower than protein L by a factor of

two, qualitatively consistent with experiment.

The theoretical studies strongly emphasize that the

choice of reaction coordinate for monitoring folding pro-

gress is important for the observation of intermediates

[24��,33��,46]. Shimada and Shakhnovich [24��] showed

that, when folding is monitored by using burial of the lone

tryptophan in protein G as the reaction coordinate, the

ensemble kinetics is single exponential (as was observed

in the all-atom simulations reported in [46]), whereas

alternative reaction coordinates revealed the presence

of intermediates along the multiple pathways.

The problem of determining a good reaction coordinate is

illustrated in Figure 3, which shows the potential of mean

force for protein G as a function of native state similarity

in going from the unfolded to folded states as a function of

temperature (the folding temperature for the protein G

sequence is T ¼ 0:41 [reduced units]) [33��]. These

results might be interpreted as a shift in unfolded popula-

tion with increasing native state stability, in agreement

with Qi et al. [47], and might provide an alternative

interpretation of ultrafast folding experiments that would

be consistent with two-state folding.

Different projections onto the free energy surface that

followb-hairpin reaction coordinates show initial formation

of the second b hairpin, followed by formation of the first b
hairpin (Figure 4). In all projections (Figures 2–4), we see

the presence of a small barrier near folding conditions,

consistent with the fact that the entire population of kinetic

runs was best fit to a double exponential and consistent

with formation of an intermediate (Figure 5) [33��]. The

small free energy barriers observed in these cuts through

the free energy surface suggest to us that the full reaction

coordinate is not fully revealed and that a more compli-

cated reaction coordinate may be required [33��]. This

again emphasizes that the choice of reaction coordinate

used experimentally is very important, if different conclu-

sions concerning the presence of intermediates are to be

avoided, as was found to be the case for re-examination of

the presence of an intermediate in ubiquitin [14��].

The role of solvation in protein folding
It is widely appreciated that water plays an important role

in governing the forces that control protein structure and

stability [48]. The strong hydration forces that are respon-

sible for hydrophobic attraction and stabilization of a

protein’s native core are expected to also play an impor-

tant role in governing how the protein folds quickly to the

proper folded state. Most minimalist models have con-

centrated on interactions that do not include explicit

residue–water and water–water interactions. There is of

course implicit incorporation of solvation in physical

potentials through sticky hydrophobic interactions.

However, the use of pairwise contact potentials neglects

two prominent features of hydration forces: their many-

body nature and their potentially longer-range effects.

Recently, several research groups have attempted to

extend minimalist models to include more explicit inves-

tigation of the profound effect of hydration forces on

protein folding [39�,49�,50].

Cheung et al. [39�] have recently extended Gō potential

bead models to include an explicit solvation interaction

that favors direct contacts between beads, but also has a

barrier separating this minimum from a weak secondary

‘water-separated’ minimum. This solvation potential of

mean force is based on previous work from the chemical-

physics community that quantifies hydration for small

hydrophobic entities in water [51,52] and that has been

proposed to be the correct solvation physics relevant in

protein folding [50,53,54]. The observation of water

impregnation late in folding and the requirement of

overcoming a desolvation barrier to reach the native state

have been observed in a large number of simulations,

including the refolding of a b-hairpin fragment of protein

G [55], and all-atom simulations of protein G [56] and the

src SH3 domain [57�]. The paper by Cheung et al. [39�]
nicely demonstrated that the desolvation barrier plays a

major role in the mechanism of SH3 domain folding, in

which a near-native intermediate with a partially solvated

Figure 3
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Potential of mean force versus native state similarity as a function of
temperature for the folding of protein G for T ¼ 0:50 (black), T ¼ 0:44

(red), T ¼ 0:41 (blue) and T ¼ 0:35 (green). The folding temperature is

T ¼ 0:41 (reduced units) and the contour lines are spaced at intervals of

kbT. Based on this projection, we might conclude that there is a shift in

the unfolded population as we approach folding conditions. There is

also evidence of a small barrier.
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hydrophobic core is reached before final expulsion of

water molecules to reach the native state. This partially

denatured state appears to be consistent with residues

observed experimentally to be partially hydrated in the

vicinity of the core [39�,58].

Recent simulations have made it increasingly apparent

that hydration forces can be strongly non-pairwise addi-

tive [50,53]. A lattice protein folding study investigated

the effect of adding a multibody description of hydration

to a simple two-flavor protein model [50]. Sequences in

the hydrated model were more frequently found to have

unique ground states, to fold faster and to fold with more

cooperativity than sequences in the corresponding model

without solvation terms. These results indicate that the

multibodied nature of hydration is a counterpart to amino

Figure 4
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Free energy at the folding temperature as a function of wb1
and wb2

for protein G. The contour lines are spaced at intervals of kbT, with blue
to red representing high to low free energy values. The low free energy path corresponds to the formation of native b-hairpin 2 with non-native

b-hairpin 1.

Figure 5

100 1000 10 000 100 000
t/τ

10–2

10–1

100

P
un

fo
ld

Single exponential
Double exponential

Current Opinion in Structural Biology

Fraction of unfolded states versus time at the folding temperature

T ¼ 0:41 for protein G. Circles correspond to simulated data, the blue

line is a bi-exponential fit to the data and the red line is the fit to single-

exponential kinetics. The figure shows that the kinetics of protein G are

best fit to a double exponential.
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acid diversity and packing, which in turn gives rise to a

more cooperative folding transition [50].

Conclusions
The advantages of minimalist protein models lie in their

ability to rapidly collect meaningful statistics about fold-

ing pathways and kinetics, their ease of characterization

with coarse-grained order parameters and their concen-

tration on the essential physics of the problem to connect

with experimental observables for a given target protein.

Although Gō bead models have emphasized that native

interaction biases in the free energy landscape guide the

unfolded chain to the native state, these models avoid the

original and more difficult problem of what are the actual

physical interactions that give rise to these biases in the

real free energy surface. The deficiencies in these models

have been recognized and, over the past year, have been

supplemented by enough additional complexity to help

understand the delicate balance between energetic and

topological frustration, and the influence of aqueous

hydration on folding. This is important for several reasons

when we consider the future of protein folding simulation

using minimalist models.

First, we need to consider the impact of genome sequen-

cing projects, which provide an opportunity to understand

biological systems at a whole new level of complexity

[21�]. The first sweep through the genomic data has

emphasized large sequence comparison studies within

and between genomes to infer the structure and function

of new proteins that bear analogy to existing proteins

whose structure or biochemistry is known. In some cases,

however, this inference approach will not be useful if no

analogs exist or if the chemistry of the new sequence is

different enough from that of the analog to exhibit

changes in folding, structure, dynamics and/or function.

Biophysical approaches should be complementary to

bioinformatics for completing the annotation and minim-

alist models with reduced complexity should contribute

here. For example, a ‘designability principle’ has emerged

based on minimalist hydrophobic-polar (HP) and MJ pro-

tein potentials that might help explain the organization

of genomic sequences into fold families or superfolds

[59,60,61�,62].

Understanding protein self-assembly outside the context

of structural biology found in nature requires a better

understanding of the underlying physical interactions for

successful design of new materials. It has been recently

reported that the diversity of designed sequences is

primarily determined by a structure’s overall fold [63�],
in accordance with simple protein folding models

[59,60,61�,62]. Again, the strong role of topology suggests

that further practical success in protein design might

benefit from fully characterizing the thermodynamic

and kinetic measures of foldability using the enhanced

minimalist models discussed here.

Finally, biophysical theories and models of folding have

not yet made a connection to protein function and its

variation across genomes. Could we correlate a slow fold-

ing but very stable protein with a ubiquitous house-keep-

ing function or proteins that fold with intermediates as

potential candidates for chaperonin assistance or indicators

of disease? We will end with the provocative suggestion

that minimalist models, because they are completely

characterizable and tractable, could be extended from

their original goal of understanding the general rules of

folding to learning the general rules of function on a

genomic scale.
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